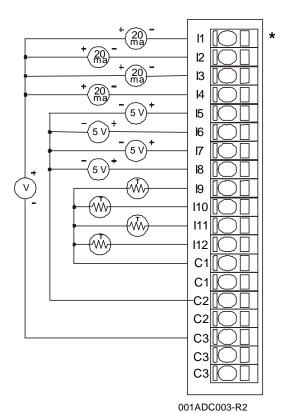
ADC920

Thermistor / Current / Voltage Analog Input Module


HE800ADC920 / HE820ADC920*
12-Bit Resolution
* HE820 denotes plastic case.

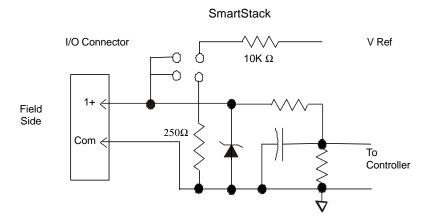
This datasheet also covers products starting with IC300 instead of HE800 or HE820.

1 SPECIFICATIONS

	ADC920	1		ADC920
Number of Channels	12		Converter Type	Successive Approximation
Input Ranges (including over-range)		-	Input Impedance	< 12VDC, Clamped @ 12VDC, 35mA Max. Continuous
Thermistor (1/10° resolution)	-37 to 115°C -35 to 240°F		Thermistor	10K ohms
Current	0-20.47mA		Current	250 ohms
Voltage	0-5.11 VDC		Voltage	1Megohm
Resolution	12-Bit		Terminal Type	Spring Clamp, Removable
Maximum Error at 25°C	0.1% Full Scale		Operating Temperature	0° to 60° Celsius
Conversion Time (PLC Update Rate)	Set by PLC Scan Time	-	Analog Inputs	12
Additional error for temperatures other than 25°C	0.01% / C°		Input Points Required	12
Required Power (Steady State)	0.19W (8mA @ 24VDC)		Relative Humidity	5 to 95% Non-condensing
Required Power (Inrush)	Negligible			
Maximum Over- Current	35mA	-	Weight	9 oz. (256 g)
External Power Supply	None			
CE UL	See Compliance Table at http://www	w.h	eapg.com/Support/comp	liance.htm


2 WIRING

O O CH 11		_
CH 2 CH 3 CH 4 CH 5 CH 6 CH 7 CH 8 CH 9 CH 10 CH 11		CH 1
CH 4 CH 4 CH 5 CH 6 CH 7 CH 8 CH 10 CH 10 CH 11		CH 2
CH 4 CH 5 CH 6 CH 7 CH 8 CH 10 CH 10 CH 11	~ ~	CH 3
CH 5 CH 6 CH 7 CH 8 CH 9 CH 10 CH 11 CH 12		CH 4
CH 6 CH 7 CH 8 CH 9 CH 10 CH 11 CH 12	1010	CH 5
CH 9 CH 10 CH 11 CH 12 CH 12		CH 6
CH 10 CH 10 CH 10 CH 11 CH 11	100	CH7
CH 10 CH 10 CH 11 CH 12	00	CH 8
CH 10 CH 11 CH 12		CH 9
CH 11	00	CH 10
└─── CH 12	0	CH 11
	00	CH 12


The jumper block indicates the correct jumper positions for the wiring shown.

For more information, refer to Section 4.2 (b), Hardware Configuration.

Pin	ADC920
l1 *	Input 1
12	Input 2
13	Input 3
14	Input 4
15	Input 5
16	Input 6
17	Input 7
18	Input 8
19	Input 9
I10	Input 10
l11	Input 11
l12	Input 12
C1 C1	Thermistor
	Common
C2	0 - 5VDC
C2	Common
C3	20mA
C3	Common
C3	Common

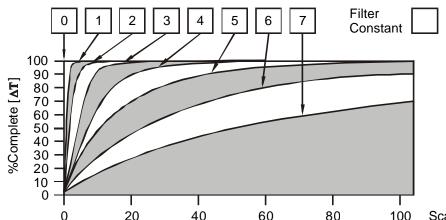
3 INTERNAL CIRCUIT SCHEMATIC

4 CONFIGURATION

Note: The status of the I/O can be monitored in Cscape Software.

4.1 Software Configuration

Preliminary configuration procedures that apply to SmartStack™ Modules are contained in the hardware manual of the controller you are using. Refer to the **Additional References** section in this data sheet for a listing of hardware manuals.


I/O Map Tab

The I/O Map describes which I/O registers are assigned to a specific SmartStack™ Module and where the module is located in the point map. The I/O Map is determined by the model number and location within the SmartStack™. The I/O Map is not edited by the user.

Module Setup Tab

- a. Input range for each channel may be selected independently.
- b. Filter Constant sets the level of digital filtering according to the following chart.
- c. In addition to configuring the module setup, the hardware must be jumpered to select the appropriate range for each channel.

MAN0317-06

0 20 40 60 80 100 Scans **Digital Filtering.** The illustration above demonstrates the effect of digital filtering (set with Filter Constant) on module response to a temperature change.

4.2 Hardware Configuration

a. Inputs

The inputs are referenced to the bus common. Each of the inputs can be jumper-selected for one of the three input types. Behind each of the input pins is a corresponding group of four jumper pins with a programming plug.

- a. To select 5V input: Connect the two pins nearest the connector.
- b. To select thermistor input: Connect the two pins nearest input 1.
- c. To select 20mA input: Connect the two pins nearest input 12.

Note: It is also necessary to specify the input channel type in Cscape along with the temperature format.

Thermistor Curve for PreCon TYPE III (Model 3)					
Temperature	Resistance	Temperature	Resistance	Temperature	Resistance
°F		°F		°F	
-35	203.6K	60	14.78K	155	2.098K
-30	173.6K	65	13.15K	160	1.920K
-25	148.3K	70	11.72K	165	1.759K
-20	127.1K	75	10.46K	170	1.614K
-15	109.2K	80	9.354K	175	1.482K
-10	94.07K	85	8.378K	180	1.362K
-5	81.23K	90	7.516K	185	1.254K
0	70.32K	95	6.754K	190	1.156K
5	61.02K	100	6.078K	195	1.066K
10	53.07K	105	5.479K	200	984.0
15	46.27K	110	4.947K	205	909.8
20	40.42K	115	4.472K	210	841.9
25	35.39K	120	4.049K	215	779.8
30	31.06K	125	3.671K	220	723.0
35	27.31K	130	3.333K	225	671.0
40	24.06K	135	3.031K	230	623.3
45	21.24K	140	2.759K	235	579.5
50	18.79K	145	2.515K	240	539.4
55	16.65K	150	2.296K		

ADC920

b. Outputs

Each **output** can be independently programmed for 0-10 volts or 0-20mA. There are two jumpers to be set for each output. Six jumper pins in two rows of three are associated with each output. For voltage output, out of each group of six, the two pins nearest connector pin 1 (marked with *) in each row are to be jumpered. For current output, out of each group of six, the two pins in each row near connector pin 8 are to be jumpered. The mode for each output must also be specified in the module setup in Cscape.

5 INPUT CONVERSION FACTOR

The following table describes how real-world inputs are scaled into the controller. Given a known input voltage, the data value is configured by using the conversion factor from the table. The following formula is used: **Data = Voltage In (Vin) / Conversion Factor**

Example: The user selects a voltage range of 0 to +5 VDC:

- 1. The known input voltage is 3 VDC.
- Using the table, the conversion factor for the voltage range of 0 to +5 VDC is 0.00015625.
- 3. To determine the data value, the formula is used:
 Data = Vin / Conversion Factor
 19200 = 3 VDC / 0.00015625

Conversion of Real-World Inputs into Controller			
Selected Voltage Range	Voltage In (Vin) VDC	Data Out	Conversion Factor
	+5.11	32704	
	+5.00	32000	
0 to +5.00 VDC	0	0	0.00015625
	NA	NA	
	NA	NA	
	+20.47	32736	
	+20.00	32000	
0 to +20mA	0	0	0.000625
	NA	NA	
	NA	NA	
°C	+115	1150	
	0	0	0.1
	-37	-370	
	+240	2400	
°F	0	0	0.1
	-35	-350	

6 INSTALLATION / SAFETY

Warning: Remove power from the OCS controller, CAN port, and any peripheral equipment connected to this local system before adding or replacing this or any module.

- a. All applicable codes and standards should be followed in the installation of this product.
- b. Shielded, twisted-pair wiring should be used for best performance.
- c. Shields should be tied directly to the ground block within the panel.
- d. Use the following wire type or equivalent: Belden 8441.

For detailed installation and a <u>handy checklist</u> that covers panel box layout requirements and minimum clearances, refer to the hardware manual of the controller you are using. (See the **Additional References** section in this document.)

When found on the product, the following symbols specify:

Warning: Consult user documentation.

Warning: Electrical Shock Hazard.

7 ADDITIONAL REFERENCES

For detailed installation, configuration and other information, refer to the hardware manual of the controller you are using. See the **Technical Support** section in this document for the web site address to download references and to obtain revised editions.

Additional References		
Controller	Manual Number	
Operator Control Station Hardware (OCS, OCX) e.g., OCS1XX / 2XX; Graphic OCS250 Remote Control Station Hardware (RCS [except	MAN0227	
RCS116], RCX) e.g., RCS210, RCS250	100 0 00221	
Color Touch OCS Hardware e.g., OCS300, OCS301, OCS350, OCS351 e.g., OCS451, OCS551, OCS651	MAN0465	
OCS LX Series Hardware e.g., LX280 / LX300; RCS116	MAN0755	
MiniOCS / MiniRCS / MiniOCX / MiniRCX Hardware e.g., HE500OCSxxx	MAN0305	
Other Useful References		
Cscape Programming and Reference	MAN0313	
DeviceNet™ Implementation	SUP0326	
Wiring Accessories and Spare Parts Manual	MAN0347	

8 TECHNICAL SUPPORT

For assistance and manual up-dates, contact Technical Support at the following locations:

North America: (317) 916-4274 www.heapg.com

Europe:

(+) 353-21-4321-266 www.horner-apg.com